Trang Chủ / Bài Viết / Toán THCS / HSG Casio THCS

HSG Casio THCS

MỘT SỐ BÀI TOÁN VỀ NHỊ THỨC NEWTON TRONG ĐỀ THI HSG MÁY TÍNH CẦM TAY- PHẦN 2

Bài 4. Tính gần đúng \[A={{10}^{6}}\left( \dfrac{1}{3}C_{2015}^{0}-\dfrac{1}{5}C_{2015}^{1}+\dfrac{1}{7}C_{2015}^{2}-\dfrac{1}{9}C_{2015}^{3}+…-\dfrac{1}{4033}C_{2015}^{2015} \right)\]. Hướng dẫn giải Ta có \[{{\left( 1-{{x}^{2}} \right)}^{2015}}=C_{2015}^{0}-C_{2015}^{1}{{x}^{2}}+C_{2015}^{2}{{x}^{4}}-…-C_{2015}^{2015}{{x}^{4030}}\] Suy ra \[{{x}^{2}}{{\left( 1-{{x}^{2}} \right)}^{2015}}=C_{2015}^{0}{{x}^{2}}-C_{2015}^{1}{{x}^{4}}+C_{2015}^{2}{{x}^{6}}-…-C_{2015}^{2015}{{x}^{4032}}\] Do đó \[\int\limits_{0}^{1}{{{x}^{2}}{{\left( 1-{{x}^{2}} \right)}^{2015}}dx}=\int\limits_{0}^{1}{\left( C_{2015}^{0}{{x}^{2}}-C_{2015}^{1}{{x}^{4}}+C_{2015}^{2}{{x}^{6}}-…-C_{2015}^{2015}{{x}^{4032}} \right)}dx\] Suy ra \[A={{10}^{6}}.\int\limits_{0}^{1}{{{x}^{2}}{{\left( 1-{{x}^{2}} \right)}^{2015}}dx}\approx 4,894388\] Bài 5. Khai triển ${{\left( 1+x+{{x}^{2}}+…+{{x}^{2015}} \right)}^{3}}$ thành ${{A}_{0}}+{{A}_{1}}x+…+{{A}_{2015}}{{x}^{2015}}+…+{{A}_{6045}}{{x}^{6045}}$ Tính hệ số ${{A}_{2015}}$ của ${{x}^{2015}}$. Hướng …

Đọc Tiếp »

MỘT SỐ BÀI TOÁN VỀ NHỊ THỨC NEWTON TRONG ĐỀ THI HSG MÁY TÍNH CẦM TAY- PHẦN 1

Bài 1. Tìm hệ số lớn nhất trong khai triển nhị thức ${{(5x+\sqrt{7})}^{11}}$ Hướng dẫn giải Ta có \[{{(5x+\sqrt{7})}^{11}}=\sum\limits_{k=0}^{11}{C_{11}^{k}{{(5x)}^{k}}{{(\sqrt{7})}^{11-k}}}=\sum\limits_{k=0}^{11}{C_{11}^{k}{{5}^{k}}{{(\sqrt{7})}^{11-k}}}{{x}^{k}}\] Hệ số của số hạng tổng quát ${{a}_{k}}=C_{11}^{k}{{.5}^{k}}{{(\sqrt{7})}^{11-k}};k\in \mathbb{Z},0\le k\le 11$ Xét $\dfrac{{{a}_{k}}}{{{a}_{k+1}}}<1$$\Leftrightarrow   \dfrac{C_{11}^{k}{{.5}^{k}}.{{(\sqrt{7})}^{11-k}}}{C_{11}^{k+1}{{.5}^{k+1}}.{{(\sqrt{7})}^{10-k}}}<1$ $\Leftrightarrow \dfrac{\sqrt{7}}{5}.\dfrac{k+1}{11-k}<1$ $\Rightarrow k<6,8$ $\dfrac{{{a}_{k}}}{{{a}_{k+1}}}>1$$\Leftrightarrow   \dfrac{C_{11}^{k}{{.5}^{k}}.{{(\sqrt{7})}^{11-k}}}{C_{11}^{k+1}{{.5}^{k+1}}.{{(\sqrt{7})}^{10-k}}}>1$$\Leftrightarrow \dfrac{\sqrt{7}}{5}.\dfrac{k+1}{11-k}>1$$\Rightarrow k>6,8$ Vì  $k\in \mathbb{Z},0\le k\le 11$ nên ta có: ${{a}_{0}}<{{a}_{1}}<…<{{a}_{6}}$ và …

Đọc Tiếp »
×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết